

Title	150 W Three-Phase Inverter Using BridgeSwitch [™] -2 BRD2463C and LinkSwitch [™] -TN2 LNK3205D in FOC Operation
Specification	340 VDC Input, 150 W Continuous Three-Phase Inverter Output Power, 750 mA _{RMS} Continuous Motor Phase Current
Application	High-Voltage Brushless DC (BLDC) Motor Drive
Author	Applications Engineering Department
Document No.	RDR-974
Date	November 19, 2024
Revision	С

Summary and Features

- BridgeSwitch-2 high-voltage half-bridge motor driver
- Integrated 600 V FREDFETs with ultra-soft, fast recovery diodes
- No heat sink
- Fully self-biased operation simplifies auxiliary power supply but can also support external bias
 operation as needed
- High-side and low-side cycle-by-cycle current limit
- Optional latching low-side current limit
- Configurable latching or hysteretic over-temperature protection
- High-voltage bus monitor for overvoltage protection
- Simplified error flagging through the Error Flag (EF) pin on the interface
- Supports any microcontroller (MCU) for sensorless field-oriented control (FOC) through the signal interface
- Instantaneous phase current output signal for each BridgeSwitch-2 device
- +5 V supply available through the interface
- Less than 10 mW inverter no-load power consumption using Sleep Mode

PATENT INFORMATION

The products and applications illustrated herein (including transformer construction and circuits external to the products) may be covered by one or more U.S. and foreign patents, or potentially by pending U.S. and foreign patent applications assigned to Power Integrations. A complete list of Power Integrations' patents may be found at www.power.com. Power Integrations grants its customers a license under certain patent rights as set forth at <u>https://www.power.com/company/intellectual-property-licensing/</u>.

Table of Contents

1	Intr	oduction	5
2	Inve	erter Specification	7
3	Sch	ematic	8
4	Circ	uit Description	14
	4.1	Three-Phase BridgeSwitch Inverter	14
	4.2	Input Stage	14
	4.3	BridgeSwitch Bias Supply	14
	4.4	PWM Input.	14
	4.5	Error Flag	15
	4.6	Cycle-by-Cycle Current Limit	15
	4.7	Latching Current Limit	15
	4.8	Overvoltage (OV) Protection	15
	4.9	FAULT Bus Provisions	15
	4.10	Device ID Provisions	15
	4.11	System Undervoltage Status Updates	16
	4.12	System Monitoring Provisions	16
	4.13	Sleep Mode	16
	4.14	Microcontroller (MCU) Interface	16
	4 15	External Supply	16
	4 16	Auxiliary Power Supply Circuit	17
	4 17	5 V Output Linear Regulator	17
	4 18	Current Sense Amplifier	17
5	Drin	ted Circuit Board Lavout	18
6	Bill	of Materials	20
7	Dorf	formance Data	20
'	7 1	Start-In Operation	21
	7.1	1 Bypacs Voltages Start-Un Wayeforms	21 71
	7.1.	2 Motor Start-Up Waveforms	21
	7.1.	Stoady-State Operation	22
	7.2	1 Phase Voltages (Low-side Vac) at Steady-State	22
	7.2.	2 Low-Side Draip-to-Source Voltage Slow Pate	2J 74
	7.2.	2 Phase Currents at Steady-State	27
	7.2.	 A DWM Input Signals at Stoady-State 	25
	7.2.	5 BDL and BDH at Stoady-State	20
	73	J DEL and DETT at Steady-State	27 28
	7.5 72	1 100 mA Average Motor Phase Current	20
	7.5.	2 295 mA Average Motor Phase Current	29
	7.J. 7.2	2 365 IIIA Average Motor Phase Current	29
	7.3. 7.2	Thermal Scan Summary Tables	20
	/.S. 7	2.4.1 Solf Supply Mode	20
	7	2.4.2 External Supply Mode	0C.
		.3.4.2 External Supply Mode	.3U 21
	7.4	No-Load Input Power Consumption	21
	/.4.	 Self-Supply (Sleep Mode OFF) Self Supply (Sleep Mode ON) 	31 22
	/.4.	Z Sell-Supply (Sleep Mode UN)	<u></u> כ∠
	/.5	EIIICIENCY	34 25
	7.5.		35

	7.5.2	Efficiency Table at External Supply Mode	35
	7.6 De	vice and System Level Protection	36
	7.6.1	Cycle-by-Cycle Overcurrent Protection (OCP)	36
	7.6.2	Over-temperature Protection	. 37
	7.6.2	.1 Hysteretic Thermal Shutdown	37
	7.6.2	.2 Latching Thermal Shutdown	.38
	7.6.3	Overvoltage Protection (OVP)	. 39
	7.7 Ab	normal Motor Operation Test	40
	7.7.1	Operation under Stalled Motor Conditions	40
	7.7.2	Operation with One Motor Winding Disconnected	41
	7.7.3	Running Overload Test	43
8	Append	ix	44
	8.1 Boa	ard Quick Reference	44
	8.1.1	Microcontroller (MCU) Interface Signals	44
	8.1.2	J4 Connector Pin Designation	45
	8.2 Re	commended Start-up Sequence	46
	8.3 Inv	verter Output Power Measurement	47
	8.4 No	-Load Input Power Measurement	48
	8.5 IPH	H Reconstruction by the MotorXpert Suite	49
	8.6 FA	ULT and Error Flag Configurations	50
	8.7 Tes	st Bench Set-up	51
	8.7.1	Equipment Used	52
9	Revisio	n History	53

Important Note:

During operation, the reference design board is subject to hazards including high voltages, rotating parts, bare wires, and hot surfaces. Energized DC bus capacitors require time to discharge after DC input disconnection.

All testing should use an isolation transformer to provide the DC input to the board.

1 Introduction

This document describes a 150 W, 96% efficient, three-phase inverter for high-voltage brushless DC (BLDC) motor application with three BridgeSwitch-2 BRD2463C devices. The design shows the device performance, internal level monitoring, system level monitoring, and fault protection facilitated by the high level of integration of the BridgeSwitch-2 half-bridge motor driver IC. A high-voltage, low component count buck converter using the LinkSwitch-TN2 LNK3205D device supplies the current sense amplifier and optionally provides external bias for the BridgeSwitch-2 devices.

Also included in this report are the inverter specifications, schematic, bill of materials, printed circuit board (PCB) layout, performance data, and test setup. The provided waveforms and performance data are based on a sensorless field-oriented control (FOC) method employing the Space Vector Modulation (SVM) scheme commonly referred to as three-phase modulation in this document. This is implemented by the MotorXpert Suite by using the instantaneous phase current (IPH) information as current feedback.

Figure 1 – Populated Circuit Board Top View.

Figure 2 – Populated Circuit Board Bottom View.

2 Inverter Specification

The table below summarizes the electrical specifications and performance data of the three-phase inverter design.

Description	Symbol	Min	Тур	Max	Unit	Comment
Input						
Voltage	VIN	270	340	365	V	2-wire DC Input.
Current	I _{IN}		0.46		A _{RMS}	RMS.
Power	PIN		153		W	At Efficiency = 96%.
Output						
Power	Роит		147		W	Inverter Output Power.
Motor Phase Current	Imot(RMS)		0.75		Arms	Continuous RMS per Phase.
Inverter Peak Output Current	I _{INT(PK)}		2.50		А	Inverter Peak Current.
PWM Carrier Frequency ¹	f _{PWM}		10		kHz	Three-Phase FOC Modulation.
Inverter Efficiency	η		96		%	Self-Supplied Operation.
Output Speed	ω		3000		RPM	Motor Speed at 150 W Inverter Output.
Environmental						
Ambient Temperature	Тамв	-20	29	65	°C	Average Ambient Temperature. Closed-case. Free Convection.
Device Case Temperature	TPACKAGE		75	111	°C	0.75 A _{RMS} Phase Current in Self-Supplied Operation.
System Level Monitoring						
DC Bus Sensing						Reported through the Error Flag (EF) Pin.
OV Threshold	Vov		362		V	
Over Current Protection ²	IOCP		2.50		Арк	At XL/XH = 42.2 k Ω
Notes: 1. 20 kHz is the maximum 2. This can be manually co maximum current protect	recommende nfigured by a ction level is	ed PWM f adjusting 2.50 A at	frequency the value t an XL/X	with self of the X H resistar	-supply L/XH resis nce of 42.2	tors. For BRD2463C, the ! kΩ.
	Table 1	– Invert	er Specif	fication.		

3 Schematic

Figure 3 – BridgeSwitch Three-Phase Inverter Schematic.

PI-9926-091024

Figure 4 – Input Stage Schematic.

PI-9927-091024

Figure 5 – Microcontroller Interface Schematic.

Figure 6 – External Supply Components Schematic.

PI-9582a-090624

Figure 9 – FAULT Bus and Device ID Components Schematic.

Figure 10 – 15 V Auxiliary Supply Schematic.

Figure 11 – 5 V Linear Regulator Circuit Schematic.

Figure 12 – Current Sense Amplifier Circuit Schematic.

4 Circuit Description

This reference design features a three-phase inverter with three BridgeSwitch-2 BRD2463C devices to drive a high-voltage, three-phase, brushless DC (BLDC) motor implementing field-oriented control (FOC). Each BridgeSwitch-2 device combines two 600 V, N-channel power FREDFETs with their corresponding gate drivers into a low-profile surface mount package. The power FREDFET features an ultra-soft, fast-recovery diode ideally suited for inverter drives. Both low-side and high-side gate drivers are fully self-supplied eliminating the need for an additional power supply to provide gate drive power.

A LinkSwitch-TN2 LNK3205D device in a high-voltage buck converter provides an optional 15 V supply for the BridgeSwitch-2 in the external bias configuration and serves as input to the 5 V linear regulator powering up the current sense amplifier circuit.

Additionally, the BridgeSwitch-2 device incorporates internal fault protection which includes cycle-by-cycle current limit for both FREDFETs, thermal overload protection, and high-voltage DC bus sensing to protect against overvoltage conditions. A single-wire bus inhibits device switching and communicates with the system microcontroller during these detected faults.

4.1 Three-Phase BridgeSwitch Inverter

The BridgeSwitch-2 devices U1, U2, and U3 form the three-phase inverter. The output of the inverter connects to the three-phase BLDC motor through connectors J1, J2, and J3.

4.2 Input Stage

The input stage consists of terminals J6 and J7, input diode D6, and bulk capacitor C27. Terminals J6 (positive) and J7 (negative) serve as connectors for the high-voltage DC bus. The bulk capacitor C27 minimizes the path from the high-voltage DC supply to the board and stabilizes the DC bus. Input diode D6 protects the bulk capacitor from reversed DC voltage and prevents load current from flowing back to the source during abnormal operating conditions.

4.3 BridgeSwitch Bias Supply

Capacitors C19, C21, and C23 provide self-supply decoupling for the integrated low-side controller and gate driver. An internal high-voltage current source charges these capacitors upon reaching the minimum bus voltage.

On the other hand, capacitors C18, C20, and C22 provide self-supply decoupling for the integrated high-side controller and gate driver. An internal high-voltage current source charges these capacitors whenever the low-side FREDFET turns on, completing the path from the half-bridge point to the power ground.

4.4 **PWM Input**

Input PWM signals PWML_U, PWMH_U, PWML_V, PWMH_V, PWML_W, PWMH_W control the switching states of the integrated high-side and low-side power FREDFETs. The system microcontroller provides the PWM signal at the desired switching frequency. Resistors R24, R25, R30, R31, R37, and R38 serve as PWM signal filters before connecting to the INL and /INH pins of the BridgeSwitch-2 device.

4.5 Error Flag

The BridgeSwitch-2 (BRD2463C) features the new error flag pin which simplifies fault communication with the microcontroller. It is pulled up to 5 V by resistor R54 and connects to a single bus through resistors R61, R62, and R63.

During latching conditions, such as after latching overcurrent and over-temperature protection faults, the EF pin is automatically pulled down to inhibit FREDFET switching until either a power recycle, or an EF reset signal through components D7 and R55. No action is required for resetting the EF pin after hysteretic protection conditions such as overvoltage and hysteretic over-temperature states.

4.6 Cycle-by-Cycle Current Limit

Resistors R28, R34, R41, R27, R33, and R40 set the cycle-by-cycle current limit level for the integrated low-side and high-side power FREDFETs. A selected value of 42.2 k Ω sets the current limit to 100% of the default level (2.50 A_{PK}). The cycle-by-cycle overcurrent protection for the low-side FREDFET is selected by setting the SLP programming resistor R65 to either 9.53 k Ω or OPEN (\geq 1 M Ω). This is the default setting for this reference design.

4.7 Latching Current Limit

Setting the SLP programming resistor R65 to 133 k Ω activates the latching current limit protection for the low-side power FREDFET. In this configuration, the low-side FREDFET latches off after a sustained overcurrent state over sixteen consecutive switching cycles. The Error Flag pin is pulled down to inhibit switching and is only pulled up after receiving an EF reset signal or a power recycle.

4.8 Overvoltage (OV) Protection

The BridgeSwitch-2 device (U1) monitors the DC bus voltage through resistors R21, R22, and R23 with a combined resistance of 6 M Ω . This sets the bus overvoltage threshold at 362 VDC. The Error Flag pin is pulled down to inhibit FREDFET switching when the bus voltage exceeds this threshold and is automatically pulled up once the bus voltage drops below the hysteresis level.

4.9 FAULT Bus Provisions

BridgeSwitch-2 devices U1, U2, and U3 may also be populated with BRD2263C devices if the FAULT bus functionality is desired. The fault pins connect to a single fault bus through resistors R56, R57, and R58, and pulled-up to 5 V by R49. The FAULT bus reports any detected internal and system status change through pin 16 of connector J4.

4.10 Device ID Provisions

For FAULT bus applications, each BridgeSwitch-2 device assigns itself a unique device ID by altering the pin 11 (ID) connection. This pin can be floating, connected to the SG pin through R60, or connected to the BPL pin through R59. The device ID allows the specific device flagging a fault to communicate its physical location to the system microcontroller.

4.11 System Undervoltage Status Updates

The FAULT Bus enables fault flagging during undervoltage conditions. This is set through resistors R21, R22, and R23, the same components for determining the overvoltage protection threshold. A 6 M Ω combined resistance sets the undervoltage thresholds to 212 V, 182 V, 152 V, and 122 V.

4.12 System Monitoring Provisions

System temperature monitoring is possible with the FAULT Bus through thermistor RT1 connected to the SM pin (U3). Resistor R36 tunes the threshold to the desired level for a system thermal fault flag reported by the FAULT pin. Alternatively, an external sensor may be connected to the SM pin (U2) through pin 2 of connector J4 after depopulating resistor R50.

4.13 Sleep Mode

The new sleep mode is designed to reduce the standby input power consumption by disabling the low-side driver functionality during non-operation. It is enabled by setting the SLP Bus HIGH (min. 2.5 V) through components D8 and R64.

4.14 Microcontroller (MCU) Interface

Connector J4 allows the system microcontroller to interface with the BridgeSwitch-2 threephase inverter. It provides access to the following signals:

- **EF_RST** Input pin for the EF reset signal (for releasing latching conditions)
- EF Bi-directional pin for Error Flag state monitoring and inhibiting FREDFET switching
- **SLP** Input pin for the sleep mode enable signal
- GND Common ground interface between the microcontroller and the inverter board
- **PWMH_U, PWML_U, PWMH_V, PWML_V, PWMH_W, and PWML_W** Input pins for the low-side and high-side FREDFET PWM control signals
- +5 V Voltage supply pin for the microcontroller as needed
- **SM** Configurable system monitoring pin for the BridgeSwitch device (U2).
- Curr_fdbkU, Curr_fdbkV, Curr_fdbkW Current feedback information from the inverter shunt resistors processed by the signal conditioning circuit
- IPH_U, IPH_V, IPH_W Low-side FREDFET instantaneous phase current information from the IPH pin

4.15 External Supply

Components R43, R44, R45, R46, R47, R48 and diodes D3, D4, and D5 are responsible for providing external supply to the BridgeSwitch BPL and BPH pin through device U4. External supply operation is optional for applications that require higher efficiency or operate at elevated ambient temperatures. Otherwise, these components can be depopulated and the BPL and BPH supplies will be drawn internally from the BridgeSwitch-2 device (self-supply mode).

4.16 Auxiliary Power Supply Circuit

Device U4 (LNK3205D) is a high-side buck switcher IC responsible for providing optional 15 V supply to the BPL and BPH pins, and input to the 5 V linear regulator. It steps down the high-voltage DC input to a lower output voltage.

For more information about LNK3205D, please refer to the datasheet through the following link: <u>https://ac-dc.power.com/design-support/product-documents/data-sheets/linkswitch-tn2-data-sheet/</u>

4.17 5 V Output Linear Regulator

Device U5 (MCP1804T) is a 5 V linear regulator that supplies the signal conditioning circuit, and the microcontroller through pin 1 of connector J4.

4.18 Current Sense Amplifier

Components U6B, U6C, and U6D are current sense amplifiers which process current information from shunt resistors R29, R35, and R42. A 2.5 VDC offset is provided by the U6A circuit to maintain the shunt resistor signals within the positive range. The microcontroller receives the U6B, U6C, and U6D circuit outputs to use as current feedback for implementing the desired motor control algorithm.

Note: U6A, U6B, U6C, and U6D are op-amps in one IC package (Quad op-amp, U6)

5 Printed Circuit Board Layout

Figure 13 – Printed Circuit Board Layout Top View.

Note:

- 1. The overall PCB dimension is 131 mm x 65 mm (L x W).
- 2. The inverter PCB dimension is 96 mm x 46 mm $(L \times W)$ in black rectangle.
- 3. PCB Specifications:
 - Board thickness: 0.062 inches
 - Board material: FR4
 - Copper weight: 2 oz
 - No. of layers: 2

Figure 14 – Printed Circuit Board Layout Bottom View.

6 Bill of Materials

Item	Qty	Ref Des	Description	Mfg Part Number	Mfg	
1	1	C1	0.1µF ±10%, 50V, Ceramic, X7R, 0603	CGA3E2X7R1H104K080AA	TDK	
2	2	C2, C8	10 µF, ±10%, 16V, X7R, Ceramic, SMT, MLCC 0805	CL21B106KOQNNNE	Samsung	
3	1	C3	22 μF, 50 V, Electrolytic, (5 x 11)	UPW1H220MDD	Nichicon	
4	3	C4, C10, C15	100 pF, 50 V, Ceramic, NP0, 0603	CC0603JRNPO9BN101	Yageo	
5	3	C5, C11, C16	470 pF, 50 V, Ceramic, C0G/NP0, 0603	VJ0603A471JXAAC	Vishay	
6	3	C6, C12, C17	1000 pF, 100 V, Ceramic, NP0, 0603	C1608C0G2A102J	TDK	
7	2	C7, C9	1 µF, 50 V, Ceramic, X5R, 0805	08055D105KAT2A	AVX	
8	1	C13	1 µF, 16 V, Ceramic, X7R, 0603	CL10B105KO8VPNC	Samsung	
9	1	C14	100 nF, 25 V, Ceramic, X7R, 0603	VJ0603Y104KXXAC	Vishay	
10	3	C18, C20, C22	4.7 μF, ±10%, 35V, Ceramic, X7R, 0805	C2012X7R1V475K125AE	TDK	
11	3	C19, C21, C23	1 µf, ±10%, 25 V, Ceramic, X7R, 0603	CGA3E1X7R1E105K080AE	TDK	
12	3	C24, C25, C26	220 nF, 500 V, Ceramic, X7R, 1812	C1812C224KCRACTU	Kemet	
13	1	C27	100 µF, 400 V, Electrolytic, Low ESR, (16 x 30)	EPAG401ELL101ML30S	Nippon Chemi-Con	
14	1	D1	600 V, 1 A, Rectifier, Glass Passivated, POWERDI123	DFLR1600-7	Diodes, Inc.	
15	1	D2	600 V, 1 A, Ultrafast Recovery, 75 ns, SOD-123	UFM15PL-TP	Micro Commercial	
16	3	D3, D4, D5	600 V, 1 A, Fast Recovery, 250 ns, SMA	RS1J-13-F	Diodes, Inc.	
17	1	D6	400 V, 3 A, Rectifier, DO-201AD	1N5404-E3/54	Vishay	
18	2	D7, D8	General Purpose, 75 V, 150 mA, SOD-323	1N4148WS-7-F	Diodes, Inc.	
19	3	J1, J2, J3	0.250" Ouick Connect Male	1287-ST	KevStone	
20	1	J4	(1 x 19) Male header, 0.1 pitch, Vertical, Au	PH1-19-UA	Adam Tech	
22	1]6	Test Point, RED, Thru-hole Mount	5010	Keystone	
23	1	17	Test Point, BIK, Thru-hole Mount	5011	Keystone	
24	1	L1	680 μH. 0.36 A	SBC3-681-361	SUNX	
25	1	R1	RES. 43 kQ. 5%, 1/8 W. Thick Film, 0805	FR1-6GFY1433V	Panasonic	
26	1	R2	RES. 2.49 kQ. 1%, 1/10 W. Thick Film, 0603	FR1-3FKF2491V	Panasonic	
27	1	R3	RES. 15.8 kQ. 1%, 1/8 W. Thick Film, 0805	FR1-6FNF1582V	Panasonic	
28	3	R4 R9 R16	RES 100 Q 1% 1/10 W Thick Film 0603	FR1-3FKF1000V	Panasonic	
		R5, R8, R10,	RES. $3.9 \text{ k}\Omega$, $\pm 1\%$, $0.1W$, $1/10W$, 0.603 .		- unabornie	
29	6	R13, R17, R20	Automotive, AEC-Q200, Thick Film	ERJ-3EKF3901V	Panasonic	
30	6	R6, R7, R11, R12, R18, R19	RES, 1.33 kΩ, 1%, 1/10 W, Thick Film, 0603	ERJ-3EKF1331V	Panasonic	
31	2	R14, R15	RES, 1 kΩ, 1%, 1/10 W, Thick Film, 0603	ERJ-3EKF1001V	Panasonic	
32	2	R21, R22, R23	RES, 2 MΩ, 1%, 1/4 W, Thick Film, 1206	ERJ-8ENF2004V	Panasonic	
33	6	R24, R25, R30, R31, R37, R38	RES, 10 $\Omega,$ 5%, 1/10 W, Thick Film, 0603	ERJ-3GEYJ100V	Panasonic	
34	3	R26, R32, R39	RES, 10 kΩ, 1%, 1/10 W, Thick Film, 0603	ERJ-3EKF1002V	Panasonic	
35	3	R27, R33, R40	RES, 42.2 kΩ, 1%, 1/8 W, Thick Film, 0805	ERJ-6ENF4222V	Panasonic	
36	3	R28, R34, R41	RES, 42.2 kΩ, 1%, 1/10 W, Thick Film, 0603	ERJ-3EKF4222V	Panasonic	
37	3	R29, R35, R42	RES, 75 m Ω , ±1%, 1W Chip Resistor, 1206, Automotive, AEC-Q200, Thick Film	ERJ-8BWFR075V	Panasonic	
38	3	R43, R45, R47	RES, 220 Ω, 5%, 1/10 W, Thick Film, 0603	ERJ-3GEYJ221V	Panasonic	
39	3	R44, R46, R48	RES, 620 Ω, 5%, 1/10 W, Thick Film, 0603	ERJ-3GEYJ621V	Panasonic	
40	4	R50, R61, R62, R63	RES, 0 Ω, 5%, 1/10 W, Thick Film, 0603	ERJ-3GEY0R00V	Panasonic	
41	1	R54	RES, 43 kΩ, 5%, 1/10 W, Thick Film, 0603	ERJ-3GEYJ433V	Panasonic	
42	2	R55, R64	RES, 3.3 kΩ, 5%, 1/10 W, Thick Film, 0603	ERJ-3GEYJ332V	Panasonic	
43	1	R65	RES, 9.53 kΩ, 1%, 1/10 W, Thick Film, 0603	ERJ-3EKF9531V	Panasonic	
46	3	U1, U2, U3	BridgeSwitch-2, Max. BLDC Motor Current 3 A (DC). InSOP-24C	BRD2463C	Power Integrations	
47	1	U4	LinkSwitch-TN2, SO-8C	LNK3205D	Power Integrations	
48	1	U5	IC, REG, LDO, 5.0 V, 0.15 A, 28 Vin max, TO- 243AA. SOT-89-3	MCP1804T-5002I/MB	MicroChip	
49	1	U6	IC, GP Op-Amp, Ouad, R2R, 14-TSSOP	AD8648ARUZ-REEL	Analog Devices	
	-	- •	Table 2 – Bill of Materials.			

7 Performance Data

This section includes waveforms and performance data of the BridgeSwitch-2 inverter. These were measured with a DC bus level of 340 VDC, and a 10 kHz PWM signal implementing the three-phase modulated field-oriented control at an ambient of 29 °C.

7.1 Start-Up Operation

7.1.1 Bypass Voltages Start-Up Waveforms

The waveforms below show the low-side and high-side bypass pin voltages in self-supply mode after a bus voltage of 340 VDC is applied. This follows the recommended start-up sequence described in Section 8.2 of the Appendix. For this measurement, the DC bus turn-on slew rate was set to 100 V/ms.

Figure 15 – BPL and BPH Signals at Start-up, INL LOW. CH1: V_{BUS}, 50 V/div. CH2: V_{BPL}, 2 V/div. CH3: V_{BPH}, 2 V/div. CH4: V_{INL}, 1 V/div. Time Scale: 1 ms/div.

Figure 16 – BPL and BPH Signals at Start-up, INL

HIGH. CH1: V_{BUS}, 50 V/div. CH2: V_{BPL}, 2 V/div. CH3: V_{BPH}, 2 V/div. CH4: V_{INL}, 1 V/div. Time Scale: 5 ms/div.

7.1.2 Motor Start-Up Waveforms

The waveforms below demonstrate motor start-up at light load (100 mA) and full load (750 mA) conditions.

Figure 17 – Motor Start-up at 100 mA Load. CH1: V_{HB} , 50 V/div. CH2: V_{INL} , 1 V/div. CH3: I_{PHASE} , 1 A/div. Time Scale: 1 s/div. Peak Phase Current = 1.86 A. Figure 18 – Motor Start-up at 750 mA Load. CH1: V_{HB} , 50 V/div. CH2: V_{INL} , 1 V/div.

CH3: I_{PHASE}, 1 A/div. Time Scale: 1 s/div. Peak Phase Current = 2.06 A.

7.2 Steady-State Operation

7.2.1 Phase Voltages (Low-side V_{DS}) at Steady-State

The phase voltage (low-side V_{DS}) waveforms below were measured from light load to full load using a 10 kHz PWM signal, 340 V DC bus voltage, and at a motor speed of 3000 RPM.

Time Scale: 4 ms/div. Peak Phase Voltage (U) = 351 VPeak Phase Voltage (V) = 358 VPeak Phase Voltage (W) = 365 V

Peak Phase Voltage (V) = 358 V Peak Phase Voltage (W) = 365 V

Peak Phase Voltage (U) = 351 V

Time Scale: 4 ms/div.

7.2.2 Low-Side Drain-to-Source Voltage Slew Rate

The waveforms below show the voltage slew rate at the turn on and turn off transitions of the low-side FREDFET switching. These measurements were done at half load (375 mA) and full load (750 mA) operating conditions at the positive peak of the phase current.

Figure 25 –Turn On Slew Rate, 750 mA Load. CH1: V_{HB}, 50 V/div. CH2: I_{PHASE}, 500 mA/div. Time Scale: 1 ms/div. Time Scale (Zoomed Area): 35 ns/div. Measured Slew Rate = 2.76 V/ns.

Figure 24 – Turn Off Slew Rate, 375 mA Load. CH1: V_{HB}, 50 V/div. CH2: I_{PHASE}, 500 mA/div. Time Scale: 1 ms/div. Time Scale (Zoomed Area): 35 ns/div. Measured Slew Rate = 1.67 V/ns.

Figure 26 – Turn Off Slew Rate, 750 mA Load.

CH1: V_{HB}, 50 V/div. CH2: I_{PHASE}, 500 mA/div. Time Scale: 1 ms/div. Time Scale (Zoomed Area): 35 ns/div. Measured Slew Rate = 2.88 V/ns.

7.2.3 Phase Currents at Steady-State

The inverter phase currents using the three-phase modulation FOC algorithm are shown in the waveforms below. These were measured from light load to full load at steady-state operation.

Figure 27 – Phase Current at 100 mA Load. CH1: I_{PHASEU} , 1 A/div. CH2: I_{PHASEV} , 1 A/div. CH3: I_{PHASEW} , 1 A/div. Time Scale: 10 ms/div. RMS Current (U) = 95 mA_{RMS}. RMS Current (V) = 101 mA_{RMS}. RMS Current (W) = 95 mA_{RMS}.

Figure 29 – Phase Current at 500 mA Load. CH1: I_{PHASEU}, 1 A/div. CH2: I_{PHASEV}, 1 A/div. CH3: I_{PHASEW}, 1 A/div. Time Scale: 10 ms/div. RMS Current (U) = 503 mA_{RMS}. RMS Current (V) = 507 mA_{RMS}. RMS Current (W) = 503 mA_{RMS}.

Figure 28 – Phase Current at 300 mA Load. CH1: I_{PHASEU}, 1 A/div.

CH2: IPHASED, 1 A/div. CH2: IPHASEV, 1 A/div. CH3: IPHASEW, 1 A/div. Time Scale: 10 ms/div. RMS Current (U) = $305 \text{ mA}_{\text{RMS}}$. RMS Current (V) = $310 \text{ mA}_{\text{RMS}}$. RMS Current (W) = $305 \text{ mA}_{\text{RMS}}$.

Figure 30 – Phase Current at 750 mA Load. CH1: I_{PHASEU}, 1 A/div. CH2: I_{PHASEV}, 1 A/div. CH3: I_{PHASEW}, 1 A/div.

Time Scale: 10 ms/div. RMS Current (U) = 753 mA_{RMS}. RMS Current (V) = 756 mA_{RMS}. RMS Current (W) = 753 mA_{RMS}.

7.2.4 PWM Input Signals at Steady-State

The waveforms below show the low-side (INL) and high-side (/INH) PWM signals from light load to full load conditions at steady-state operation. The PWM frequency is set at 10 kHz with a constant motor speed of 3000 RPM.

Figure 31 – INL and /INH Signals at 100 mA Load. CH1: V_{HB}, 100 V/div. CH2: V_{INL}, 5 V/div. CH3: V_{INH}, 5 V/div. Time Scale: 2 ms/div. Time Scale (Zoomed Area): 100 μ s/div.

Figure 33 – INL and /INH Signals at 500 mA Load. CH1: V_{HB}, 100 V/div. CH2: V_{INL}, 5 V/div.

CH3: V_{INH}, 5 V/div. Time Scale: 2 ms/div. Time Scale (Zoomed Area): 100 µs/div.

Figure 32 – INL and /INH Signals at 300 mA Load. CH1: V_{HB}, 100 V/div. CH2: V_{INL}, 5 V/div. CH3: V_{INH}, 5 V/div. Time Scale: 2 ms/div. Time Scale (Zoomed Area): 100 μ s/div.

Figure 34 – INL and /INH Signals at 750 mA Load.

CH1: V_{HB}, 100 V/div. CH2: V_{INL}, 5 V/div. CH3: V_{INH}, 5 V/div. Time Scale: 2 ms/div. Time Scale (Zoomed Area): 100 µs/div.

7.2.5 BPL and BPH at Steady-State

The waveforms below show the bypass supply voltage DC levels from light load to full load condition using self-supply mode in steady-state operation.

Figure 35 – BPL and BPH Signals at 100 mA Load. CH1: V_{HB} , 50 V/div. CH2: V_{BPL} , 3 V/div. CH3: V_{BPH} , 3 V/div. Time Scale: 4 ms/div. BPL Average Voltage = 12.7 V. BPH Average Voltage = 12.8 V.

Figure 37 – BPL and BPH Signals at 500 mA Load. CH1: V_{HB}, 50 V/div. CH2: V_{BPL}, 3 V/div. CH3: V_{BPH}, 3 V/div. Time Scale: 4 ms/div. BPL Average Voltage = 12.7 V. BPH Average Voltage = 12.7 V.

Figure 36 – BPL and BPH Signals at 300 mA Load.

CH1: V_{HB}, 50 V/div. CH2: V_{BPL}, 3 V/div. CH3: V_{BPH}, 3 V/div. Time Scale: 4 ms/div. BPL Average Voltage = 12.7 V. BPH Average Voltage = 12.8 V.

Figure 38 – BPL and BPH Signals at 750 mA Load.

CH1: V_{HB}, 50 V/div. CH2: V_{BPL}, 3 V/div. CH3: V_{BPH}, 3 V/div. Time Scale: 4 ms/div. BPL Average Voltage = 12.7 V. BPH Average Voltage = 12.7 V.

7.3 Thermal Performance

Provided are thermal scans showing the BridgeSwitch-2 device case temperatures at 100 mA, 385 mA, and 750 mA loading conditions in self and external supply modes of operation. These measurements were recorded at 340 VDC with the inverter being driven by a 10 kHz PWM signal implementing the three-phase modulation FOC algorithm at a constant motor speed of 3000 RPM. Case temperatures were recorded after a thirty-minute soak time to ensure steady-state conditions were reached. Throughout these tests, an average ambient of 29 °C was observed with the board under test enclosed in an acrylic case to minimize the effects of air flow.

To solely reflect the inverter temperature, the input diode, shunt resistors, 15 V auxiliary supply, and 5 V linear regulator were disabled by shorting input diode D6 and shunt resistors R29, R35, and R42, and depopulating auxiliary supply devices U4 and U5. The microcontroller VDD supply (5 V) was used to pull up the EF pin, while an external low-voltage DC supply provides 15 V during external supply mode. Section 8.5 of the Appendix explains the IPH reconstruction by the MotorXpert Suite in detail allowing the IPH signal to be used as current feedback for this application.

7.3.1 100 mA Average Motor Phase Current

Figure 40 – BridgeSwitch-2 Case Temperature at 100 mA Phase Current (Self-Supply Mode).

Figure 41 – BridgeSwitch-2 Case Temperature at 100 mA Phase Current (External Supply Mode).

7.3.2 385 mA Average Motor Phase Current

Figure 42 – BridgeSwitch-2 Case Temperature at 385 mA Phase Current (Self-Supply Mode).

Figure 43 – BridgeSwitch-2 Case Temperature at 385 mA Phase Current (External Supply Mode).

7.3.3 750 mA Average Motor Phase Current

Figure 44 – BridgeSwitch-2 Case Temperature at 750 mA Phase Current (Self-Supply Mode).

Figure 45 – BridgeSwitch-2 Case Temperature at 750 mA Phase Current (External Supply Mode).

7.3.4 Thermal Scan Summary Tables

7.3.4.1 Self-Supply Mode

Dhaca	Dovico	Phase Current					
Flidse	Device	100 mA	385 mA	750 mA			
U	U1	44.8 °C	53.6 °C	75.0 ℃			
V	U2	45.0 °C	54.5 °C	76.7 °C			
W	U3	44.4 °C	53.4 °C	74.0 °C			
Average T	emperature	44.7 °C	53.8 °C	75.2 °C			
Ambient Temperature		28.6 °C	29.7 °C	30.1 °C			
Tempera	ture Rise	16.1 °C	24.1 °C	45.1 °C			

Table 3 – Thermal Scan Summary Table (Self-Supply Mode).

7.3.4.2 External Supply Mode

Phace	Dovico	Phase Current				
Flidse	Device	100 mA	385 mA	750 mA		
U	U1	35.8 °C	46.3 °C	71.2 °C		
V	U2	36.8 °C	47.4 °C	73.2 °C		
W	U3	36.2 °C	46.3 °C	70.5 °C		
Average Te	mperature	36.3 °C	46.7 °C	71.6 °C		
Ambient Te	mperature	25.6 °C	27.9 °C	29.3 °C		
Temperat	ure Rise	10.7 °C	18.8 °C	42.3 °C		

Table 4 – Thermal Scan Summary Table (External Supply Mode).

7.4 No-Load Input Power Consumption

7.4.1 Self-Supply (Sleep Mode OFF)

Shown below is the inverter no-load input power measured across the operating DC bus range during self-supply mode and with sleep mode disabled. This test uses the setup shown in Figure 68 of the Appendix. To solely reflect the inverter standby power consumption, the input diode, DC bus monitoring resistors, 15 V auxiliary circuit, and 5 V linear regulator were disabled by shorting input diode D6, and depopulating bus sensing resistors R21, R22, R23, and auxiliary supply devices U4 and U5.

Figure 46 – No-Load Input Power (Sleep OFF).

7.4.2 Self-Supply (Sleep Mode ON)

BridgeSwitch-2 features sleep mode designed to greatly reduce the standby input power consumption by disabling the low-side driver functionality during non-operation. This is enabled by setting the SLP pin voltage HIGH (min. 2.5 V).

Like the previous graph, these measurements use the no-load input power measurement setup in Figure 68 of the Appendix. To solely reflect the inverter standby power consumption, the input diode, DC bus sensing circuit, 15 V auxiliary circuit, and 5 V linear regulator were disabled by shorting input diode D6, and depopulating bus sensing resistors R21, R22, R23, and auxiliary supply devices U4 and U5.

Figure 47 – No-Load Input Power (Sleep ON).

The standby power consumption difference after enabling sleep mode is shown below:

Figure 48 - No-Load Input Power Comparison (Sleep Mode ON vs. OFF)

7.5 Efficiency

Shown below is the BridgeSwitch-2 inverter efficiency data from light load to full load at both self and external supply modes of operation. A soak time of fifteen minutes per loading condition was maintained to ensure steady-state conditions were achieved. These measurements were made at 340 VDC with the inverter driven by a 10 kHz PWM signal implementing the three-phase FOC modulation algorithm at a constant motor speed of 3000 RPM.

To solely reflect the inverter efficiency, the input diode, shunt resistors, 15 V auxiliary supply, and 5 V linear regulator were disabled by shorting input diode D6 and shunt resistors R29, R35, and R42, and depopulating auxiliary supply devices U4 and U5. The microcontroller VDD supply (5 V) was used to pull up the EF pin, while an external low-voltage DC supply provides 15 V during external supply mode. Section 8.5 of the Appendix explains the IPH reconstruction by the MotorXpert Suite in detail allowing the IPH signal to be used as current feedback for this application.

Figure 49 – Inverter Efficiency Graph.

DC Input Voltage (VIN)	Input DC Current (mA)	Input Power (W)	I _{RMS} U (mA)	I _{RMS} V (mA)	I _{RMS} W (mA)	Inverter Output Power (W)	Inverter Efficiency (%)
340	171	22	100	106	103	20	91.8
340	192	36	170	179	172	34	94.5
340	217	49	240	248	239	47	95.5
340	252	65	321	324	318	63	96.0
340	283	78	388	388	385	75	96.2
340	333	98	487	485	482	95	96.3
340	385	118	581	580	576	113	96.2
340	442	139	682	682	678	133	96.1
340	483	153	754	754	750	147	95.9

7.5.1 Efficiency Table at Self Supply Mode

 Table 5 – Efficiency Table (Self-Supply Mode).

7.5.2 Efficiency Table at External Supply Mode

DC Input Voltage (VIN)	Input DC Current (mA)	Input Power (W)	I _{RMS} U (mA)	I _{RMS} V (mA)	I _{RMS} W (mA)	Inverter Output Power (W)	Inverter Efficiency (%)
340	112	21	101	107	104	20	95.2
340	140	35	171	180	173	34	96.6
340	172	49	240	247	239	47	97.0
340	207	62	311	315	309	61	97.2
340	247	77	386	387	383	75	97.2
340	300	96	481	480	478	94	97.1
340	357	116	580	578	575	113	96.9
340	418	138	681	682	678	133	96.7
340	461	153	755	756	752	147	96.4

 Table 6 – Efficiency Table (External Supply Mode).

7.6 Device and System Level Protection

BridgeSwitch-2 features a new Error Flag (EF) which offers simplified fault handling. It is set to HIGH during normal operation and is automatically pulled LOW by destructive faults such as over-temperature, overvoltage, and sustained overcurrent faults. This inhibits switching for all devices until either an EF latch reset signal or upon reaching the hysteresis level. A full motor start-up sequence is required to resume normal operation afterwards.

7.6.1 Cycle-by-Cycle Overcurrent Protection (OCP)

The current limiting function of the BridgeSwitch-2 device is demonstrated below by increasing the open-loop duty cycle during the start-up phase. For the first set of waveforms, the default current limit of 2.5 A_{PK} was maintained. Minor clipping of the phase current can be observed on Figure 50 as the phase current slightly exceeds the current limit. With the current limit decreased to 60% of its default value (1.7 A_{PK}), the clipping becomes more apparent as seen on Figure 51.

Figure 50 – Overcurrent Operation, $I_{LIM} = 2.50$ A. CH3: IPHASE, 1 A/div. CH1: VHB, 150 V/div. Time Scale: 500 ms/div. Peak Phase Current = 2.39 A

Figure 51 – Overcurrent Operation, $I_{LIM} = 1.70$ A. CH3: I_{PHASE}, 1 A/div. CH1: V_{HB}, 150 V/div. Time Scale: 500 ms/div. Peak Phase Current = 1.75 A

7.6.2 Over-temperature Protection

The waveform below depicts the low-side FREDFET over-temperature shutdown. An external heat source was applied to a single BridgeSwitch-2 device increasing the case temperature to the thermal shutdown threshold (150 $^{\circ}$ C).

7.6.2.1 Hysteretic Thermal Shutdown

The default SLP resistor (9.53 k Ω) sets the thermal shutdown response to hysteretic. This allows the inverter to restart switching once the device temperature drops below the hysteresis level. The EF bus inhibits switching for all devices when pulled LOW, and automatically goes HIGH once the device temperature is within the safe operating range.

Figure 52 – Hysteretic Thermal Shutdown. CH1: V_{HB}, 50 V/div. CH2: V_{EF}, 800 mV/div. CH3: V_{INL}, 1 V/div. Time Scale: 1 ms/div.
 Solution
 Virilia

 <td

Figure 53 – Hysteretic Thermal Shutdown Reset. CH1: V_{HB}, 50 V/div. CH2: V_{EF}, 800 mV/div. CH3: V_{INL}, 1 V/div. Time Scale: 1 ms/div.

7.6.2.2 Latching Thermal Shutdown

Depopulating the SLP programming resistor ($\geq 1 \text{ M}\Omega$) or replacing it with a 133 k Ω resistor sets the thermal shutdown response to latching. Shown below is the latching thermal shutdown response followed by an EF reset signal. For this configuration, switching is inhibited for all devices connected to the EF bus until either an EF reset signal is received, or a power recycle is performed.

Figure 54 – Latching Thermal Shutdown. CH1: V_{HB}, 50 V/div. CH2: V_{EF}, 800 mV/div. CH3: V_{INL}, 1 V/div. Time Scale: 1 ms/div.

Figure 55 – Latching Thermal Shutdown Reset (EF Reset Signal). CH1: V_{HB}, 50 V/div. CH2: V_{EF}, 800 mV/div.

> CH3: V_{INL}, 1 V/div. Time Scale: 1 ms/div.

7.6.3 Overvoltage Protection (OVP)

The waveforms below depict the bus voltage monitoring feature with the overvoltage threshold set to 362 VDC through the total resistance value of components R21, R22, and R23 (6 M Ω). Device switching is inhibited when the EF pin voltage is pulled down after exceeding the overvoltage threshold. Switching resumes once the bus voltage level drops below the overvoltage hysteresis level, automatically pulling the EF voltage HIGH.

Due to the common EF connection between the BridgeSwitch-2 devices, all device switching is inhibited ensuring reliable protection against destructive faults. A full start-up cycle is required to resume normal operation afterwards.

Figure 56 – OVP, 340 V to 362 V. CH1: V_{HB}, 50 V/div. CH2: V_{EF}, 800 mV/div. CH3: V_{INL}, 1 V/div. Time Scale: 1 ms/div. Measured OVP Level = 362 V. Figure 57 – OVP Clear, 362 V to 333 V. CH1: V_{HB} , 50 V/div. CH2: V_{EF} , 800 mV/div. CH3: V_{INL} , 1 V/div. Time Scale: 1 ms/div. Measured OVP Hysteresis Level = 333 V.

7.7 Abnormal Motor Operation Test

This section presents the abnormal operation test results for appliances with motors as described in IEC 60335-1 (Safety of household and similar electrical appliances). It includes the following tests:

- Operation under stalled motor conditions
- Operation with one motor winding disconnected
- Running overload test

The test results demonstrate the integrated protection features of the BridgeSwitch-2 under these abnormal conditions.

7.7.1 Operation under Stalled Motor Conditions

For this test, the inverter was set to initially run at 340 VDC, with a phase current of 375 mA and 750 mA, and a motor speed of 3000 RPM. After steady-state conditions are achieved, the load was increased drastically to simulate sudden braking of the motor. Once the motor stalls, the overcurrent protection of the BridgeSwitch-2 device engages, and no damage is observed on both the inverter board and the motor. The resulting waveforms are shown below:

Stalled Condition at 375 mA Load

Figure 58 – Stalled Motor Condition, 375 mA Load. CH1: I_{PHASE(U)}, 3 A/div. CH2: I_{PHASE(V)}, 3 A/div. CH3: I_{PHASE(W)}, 3 A/div. CH4: V_{EF}, 5 V/div. Time Scale: 1 s/div.

Figure 59 – Stalled Motor Condition, 750 mA Load.

CH1: IPHASE(U), 3 A/div. CH2: IPHASE(V), 3 A/div. CH3: IPHASE(W), 3 A/div. CH4: VEF, 5 V/div. Time Scale: 1 s/div.

7.7.2 Operation with One Motor Winding Disconnected

For this test, the inverter was set to initially run at 340 VDC, with a phase current of 375 mA and 750 mA, and a motor speed of 3000 RPM. After steady-state conditions are achieved, one motor winding is disconnected through a switch.

At half load (375 mA), motor operation continues with increased phase current levels on the remaining motor phases. Reconnecting the motor winding reverts the operating conditions back to its initial state.

At full load (750 mA), the overcurrent protection is triggered after disconnecting one phase causing the motor to stall. The full start-up sequence is required after reconnection to run the motor normally. No damage was incurred by both the BridgeSwitch-2 inverter board and motor during and after this test.

Figure 60 – Motor Winding Disconnection, Half Load. CH1: I_{PHASE(U)}, 3 A/div. CH2: I_{PHASE(V)}, 3 A/div. CH3: I_{PHASE(W)}, 3 A/div. CH4: V_{EF}, 5 V/div. Time Scale: 1 s/div. Phase U Reconnected at Half Load

Figure 61 – Motor Winding Reconnection, Half Load.

CH1: I_{PHASE(U)}, 3 A/div. CH2: I_{PHASE(V)}, 3 A/div. CH3: I_{PHASE(W)}, 3 A/div. CH4: V_{EF}, 5 V/div. Time Scale: 1 s/div.

Phase U Disconnected at Full Load

Figure 62 – Motor Winding Disconnection, Full Load. CH1: IPHASE(U), 3 A/div. CH2: IPHASE(V), 3 A/div. CH3: IPHASE(W), 3 A/div. CH4: VEF, 5 V/div. Time Scale: 1 s/div.

Note: At full load, the motor stalls after one motor winding is disconnected and maintains its stalled condition after the motor winding is reconnected.

7.7.3 Running Overload Test

The running overload test is performed by gradually increasing the current through the motor windings until the motor stalls. For this test, the increase is done in ten percent increments and steady-state conditions are achieved each time. This is repeated until the motor stops spinning.

Figure 63 displays the motor phase currents at the overloaded conditions until the motor stalls. No damage is incurred by both the BridgeSwitch-2 inverter board and motor during and after this test.

8 Appendix

8.1 Board Quick Reference

Microcontroller (MCU) Interface Pins

Figure 64 – RDK-974 Board Quick Reference.

8.1.1 Microcontroller (MCU) Interface Signals

- **EF_RST** Error flag reset signal interface
- **EF** Pin for error flag state monitoring and inhibiting FREDFET switching
- **SLP** Sleep mode control signal interface
- GND Common ground interface between the microcontroller and the inverter board
- PWMH_U, PWML_U, PWMH_V, PWML_V, PWMH_W, and PWML_W PWM input signal interface
- +5 V Voltage supply pin for the microcontroller as needed
- **SM** Configurable system monitoring pin for the BridgeSwitch device (U2)
- Curr_fdbkU, Curr_fdbkV, Curr_fdbkW Current feedback information from the shunt resistors processed by the signal conditioning circuit
- IPH_U, IPH_V, IPH_W Low-side power FREDFET instantaneous phase current information from each BridgeSwitch-2 device

8.1.2 J4 Connector Pin Designation

Pin No.	Signal	Туре	Comments
1	+5 V	Output	Voltage supply pin for the microcontroller as needed.
2	SM	Input	External input for system monitoring components.
3	Curr_fdbkW	Output	Current feedback information from the signal conditioning circuit for phase W.
4	Curr_fdbkV	Output	Current feedback information from the signal conditioning circuit for phase V.
5	Curr_fdbkU	Output	Current feedback information from the signal conditioning circuit for phase U.
6	IPH_W	Output	Voltage signal proportional to the instantaneous phase W low- side FREDFET Drain current.
7	IPH_V	Output	Voltage signal proportional to the instantaneous phase V low- side FREDFET Drain current.
8	IPH_U	Output	Voltage signal proportional to the instantaneous phase U low- side FREDFET Drain current.
9	PWMH_W	Input	Gate drive signal for the phase W high-side power FREDFET.
10	PWML_W	Input	Gate drive signal for the phase W low-side power FREDFET.
11	PWMH_V	Input	Gate drive signal for the phase V high-side power FREDFET.
12	PWML_V	Input	Gate drive signal for the phase V low-side power FREDFET.
13	PWMH_U	Input	Gate drive signal for the phase U high-side power FREDFET.
14	PWML_U	Input	Gate drive signal for the phase U low-side power FREDFET.
15	GND	N/A	Ground reference for the connector input and output signals.
16	FAULT_BUS	Input/Output	Single-wire, bidirectional fault communication bus.
17	SLP	Input	Sleep mode control signal.
18	EF	Output	Error flag state.
19	EF_RST	Input	Error flag reset signal.

 Table 7 – J4 Connector Pin Designation

Note: The connections are labeled accordingly on the reference design board.

8.2 Recommended Start-up Sequence

BridgeSwitch-2 devices support PWM switching frequencies up to 20 kHz in self-supply mode. To ensure sufficient supply voltage levels across the BPL and BPH pin capacitors at inverter start-up, the system microcontroller (MCU) should follow the recommended power-up sequence depicted below.

Figure 65 – Recommended Power-up Sequence with Self-Supplied Operation.

The table below describes each part of the recommended power-up sequence.

Time Point	Activity
to	A high-voltage DC bus is applied
t1	 The internal current source starts charging the BPL pin capacitor once the HD pin voltage reaches V_{HD(START)} The system MCU may start setting the low-side power FREDFET control signal INL to high
t2	 The BPL pin voltage reaches V_{BPL} (typ. 12.8 V) The device determines external device settings The internal Gate drive logic turns on the low-side power FREDFET after device setup completes and once INL becomes high or if it is already high The internal current source charges the BPH pin capacitor
t3	 The BPH pin voltage reaches V_{BPH} with respect to the HB pin (typ. 12.8 V) The device starts communicating successful power-up through the fault pin (for BRD216x and BRD226x only) Note: The device does not send a status update if the internal power-up sequence did not complete successfully.
t4	The BridgeSwitch-2 device is ready for state operationThe system MCU turns off the low-side power FREDFET

Table 8 – Power-up Sequence with Self-Supplied Operation.

8.3 Inverter Output Power Measurement

The inverter output power (P_{OUT}) can be measured using the setup in Figure 66 due to the availability of a six-channel power analyzer (WT1806E). This allows phase current readings for all three motor phases. Unlike the typical three-wattmeter implementation, a false neutral node was not created for the voltmeter connections, resulting in an identical total output power calculation as the two-wattmeter setup.

 $P_{OUT} = P_{CH1} + P_{CH2}$

Figure 66 – Inverter Output Power Measurement (Three-wattmeter Setup).

Alternatively, the two-wattmeter setup in Figure 67 may be used to simplify connections and lessen the power meter quantity requirement. This yields similar readings to the three-wattmeter method previously described.

Figure 67 – Inverter Output Power Measurement (Two-wattmeter Setup).

8.4 No-Load Input Power Measurement

The no-load input power is recorded using the setup in Figure 68. A digital multimeter set to measure DC current in the micro-ampere (μ A) range is recommended due to the lower range limitations of the power meter. This results in lower current readings than the power meter at its lowest current range (10 mA).

For the bus voltage, the power meter provides accurate measurements as its level falls within the available voltage ranges. The input power is computed using the formula below:

Figure 68 – No Load Input Power Measurement Setup.

8.5 IPH Reconstruction by the MotorXpert Suite

The instantaneous phase current (IPH) output of the BridgeSwitch-2 device is a low-voltage signal proportional to the positive phase current through the low-side power FREDFET. For use in field-oriented control, a reconstruction algorithm is required to derive the negative half-cycle current information.

Figure 69 – IPH Signals after Phase Current Reconstruction.

The IPH signal reconstruction results in Figure 69 is created through the MotorXpert Suite by utilizing the known phase current signals trigonometric relationships. Unlike the current information from shunt resistors, the reconstructed signal maximizes both the positive and negative data ranges, resulting in twice the data resolution and enhanced current control.

wiotorxpert			î
le Disconn	ect View	Help	
Status		Current Reconstruction	
Power		Control Configuration Phasing Vector Estimation	
Rotor Position		Speed Control	
HW Control		Target Speed [RPM]	1
Motor Stall		5,000 C	1
Current Limit		Acceleration [RPM/TS]	1
Speed Limit		15 - Out Line Indi 3.000	
Running Loop	Spd+Curr	Deceleration (RPM/TS)	
Current Speed	0		J
Speed Error	-	Pulse Speed [RPM] 10	i
Phase Current	0	Pulse Pulse Time [ms] 100 🖨	1
Phase Cmt Err	0		J
WD Alam		Current Control	
FAULT ShDp		Target Direct Current [mA]	
		Tamet Quad. Current In Al	
		1.000	
BrSw 1 Fault	0x00	Out Limit[%] 100	1
No Fault		Time Slice [us] 100	-
		Pulse Current (mA) 10	1
DeCur 2 Encile	0x00	Pulse Pulse Time [ms] 100	
No Fault			8
NO TOOM			
BrSw 3 Fault	0x00		
No Fault			
Commands			
ON			
OFF	STOP	-	
-			
Fault Update			
Fault Reset			

Figure 70 – MotorXpert Suite Window.

For more information about the MotorXpert Suite, visit the link below: <u>https://www.power.com/design-support/motorxpert-suite-bridgeswitch</u>

8.6 FAULT and Error Flag Configurations

This reference design is compatible with both FAULT (BRD226x) and Error Flag (BRD246x) BridgeSwitch-2 variants. The Error Flag (EF) offers a simpler fault flagging scheme compared to the FAULT bus, but only for destructive faults. Shown in Table 9 are the operating conditions flagged by each one.

FAULT Conditions	Error Flag (Default)	FAULT
HV Bus OV	\checkmark	\checkmark
HV Bus UV (100%, 85%, 70%, 55%)		\checkmark
System Thermal Fault		\checkmark
LS Driver Not Ready		\checkmark
LS FET Thermal Warning		\checkmark
LS Device Shutdown (OTP, Latching OCP)	\checkmark	\checkmark
HS Driver Not Ready		\checkmark
LS FET Cycle-by-cycle Overcurrent		\checkmark
HS FET Cycle-by-cycle Overcurrent		\checkmark
LS FET Latching Overcurrent	\checkmark	\checkmark
Device Ready (No Faults)		\checkmark

Table 9 – Error Flag and FAULT Bus Triggers.

To isolate either functionality, shorting resistors (0 Ω) are incorporated into the design. Summarized in Table 10 is the component configuration requirements for the Error Flag and FAULT bus.

Component Description	Error Flag (Default)	FAULT
BridgeSwitch-2 Device	U1, U2, U3 (BRD236x/BRD246x)	U1, U2, U3 (BD216x/BRD226x)
Pull-up Resistor	R54 (43 kΩ)	R49 (10 kΩ)
Shorting Resistors (Bus)	R61, R62, R63 (0 Ω)	R56, R57, R58 (0 Ω)
Shorting Resistors (Device ID)	N/A	R59, R60 (0 Ω)
Microcontroller Interface Pin	J4 Pin 18 (EF), J4 Pin 19 (EF_RST)	J4 Pin 16 (FAULT_BUS)
Additional Components (EF Reset)	R55, D7 (3.3 kΩ, 1N4148WS)	N/A
Optional Components (System Monitoring)	N/A	RT1, R36, R50 (100 kΩ NTC, 4.75 kΩ, 0 Ω)

 Table 10 – Error Flag and FAULT Component Configurations.

Note: The SM component values for the FAULT variant may be adjusted based on the desired system monitoring temperature threshold.

8.7 Test Bench Set-up

The setup in Figure 71 ensures the accuracy of temperature and efficiency measurements for the unit under test (RDK-974). The acrylic case minimizes air flow to prevent its effects on the performance data.

Figure 71 – Bench Set-up (Orthogonal View).

load

Figure 72 – Bench Set-up (Top View).

8.7.1 Equipment Used

- 1. Motor (57BL110S30-3150TF0) 310 VDC, 300 W, 5000 RPM rated
- 2. Motor brake load (HB-503B) 24 VDC, 300 W rated
- 3. Brake load controller (Magtrol 5210) 24 VDC, 0 to 1000 mA output
- 4. Motor Coupler 8 mm x 17 mm
- 5. High-voltage DC Source (Keysight 6812B) 750 VA, 300 Vrms, 6.5 A rated
- 6. Low-voltage DC source (Nice-Power) 30 VDC, 5 A maximum output
- 7. Oscilloscope (RTO 2004) 600 MHz, 10 Ga/s resolution
- 8. Digital Multimeter (Fluke 87V) -40 °C to 260 °C temperature range
- 9. **Precision Power Analyzer (WT1806E)** 6-channel, 2 MS/s (16 bits), 0.1 Hz to 1 MHz measurement bandwidth

9 Revision History

Date	Author	Rev.	Description & Changes	Approval
31-May-24	SM	А	Initial Release.	Apps & Mktg
13-Sep-24	SM	В	Connectors J4 and J5 Merged. R54 Value, Significant Figures, and Minor Write-up Adjustments.	Apps & Mktg
19-Nov-24	SM	С	Added Abnormal Motor Operation Test.	Apps & Mktg

For the latest updates, visit our website: www.power.com

Reference Designs are technical proposals concerning how to use Power Integrations' gate drivers in particular applications and/or with certain power modules. These proposals are "as is" and are not subject to any qualification process. The suitability, implementation and qualification are the sole responsibility of the end user. The statements, technical information and recommendations contained herein are believed to be accurate as of the date hereof. All parameters, numbers, values and other technical data included in the technical information were calculated and determined to our best knowledge in accordance with the relevant technical norms (if any). They may base on assumptions or operational conditions that do not necessarily apply in general. We exclude any representation or warranty, express or implied, in relation to the accuracy or completeness of the statements, technical information and recommendations contained herein. No responsibility is accepted for the accuracy or sufficiency of any of the statements, technical information, recommendations or opinions communicated and any liability for any direct, indirect or consequential loss or damage suffered by any person arising therefrom is expressly disclaimed.

Power Integrations reserves the right to make changes to its products at any time to improve reliability or manufacturability. Power Integrations does not assume any liability arising from the use of any device or circuit described herein. POWER INTEGRATIONS MAKES NO WARRANTY HEREIN AND SPECIFICALLY DISCLAIMS ALL WARRANTIES INCLUDING, WITHOUT LIMITATION, THE IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, AND NON-INFRINGEMENT OF THIRD PARTY RIGHTS.

Patent Information

The products and applications illustrated herein (including transformer construction and circuits' external to the products) may be covered by one or more U.S. and foreign patents, or potentially by pending U.S. and foreign patent applications assigned to Power Integrations. A complete list of Power Integrations' patents may be found at <u>www.power.com</u>. Power Integrations grants its customers a license under certain patent rights as set forth at http://www.power.com/ip.htm.

Power Integrations, the Power Integrations logo, CAPZero, ChiPhy, CHY, DPA-Switch, EcoSmart, E-Shield, eSIP, eSOP, HiperPLC, HiperPFS, HiperTFS, InnoSwitch, Innovation in Power Conversion, InSOP, LinkSwitch, LinkZero, LYTSwitch, SENZero, TinySwitch, TOPSwitch, PI, PI Expert, PowiGaN, SCALE, SCALE-1, SCALE-2, SCALE-3 and SCALE-iDriver, are trademarks of Power Integrations, Inc. Other trademarks are property of their respective companies. ©2019, Power Integrations, Inc.

Power Integrations Worldwide Sales Support Locations

WORLD HEADQUARTERS

5245 Hellyer Avenue San Jose, CA 95138, USA. Main: +1-408-414-9200 Customer Service: Worldwide: +1-65-635-64480 Americas: +1-408-414-9621 e-mail: usasales@power.com

CHINA (SHANGHAI)

Rm 2410, Charity Plaza, No. 88, North Caoxi Road, Shanghai, PRC 200030 Phone: +86-21-6354-6323 e-mail:_chinasales@power.com

CHINA (SHENZHEN)

17/F, Hivac Building, No. 2, Keji Nan 8th Road, Nanshan District, Shenzhen, China, 518057 Phone: +86-755-8672-8689 e-mail: chinasales@power.com GERMANY (AC-DC/LED Sales) Einsteinring 24 85609 Dornach/Aschheim Germany Tel: +49-89-5527-39100 e-mail: eurosales@power.com

GERMANY (Gate Driver Sales) HellwegForum 1 59469 Ense Germany Tel: +49-2938-64-39990 e-mail: igbt-driver.sales@ power.com

INDIA

#1, 14th Main Road Vasanthanagar Bangalore-560052 India Phone: +91-80-4113-8020 e-mail: indiasales@power.com ITALY

Via Milanese 20, 3rd. Fl. 20099 Sesto San Giovanni (MI) Italy Phone: +39-024-550-8701 e-mail: eurosales@power.com

JAPAN

Yusen Shin-Yokohama 1-chome Bldg. 1-7-9, Shin-Yokohama, Kohoku-ku Yokohama-shi, Kanagawa 222-0033 Japan Phone: +81-45-471-1021 e-mail: japansales@power.com

KOREA

RM 602, 6FL Korea City Air Terminal B/D, 159-6 Samsung-Dong, Kangnam-Gu, Seoul, 135-728 Korea Phone: +82-2-2016-6610 e-mail: koreasales@power.com

SINGAPORE

51 Newton Road, #19-01/05 Goldhill Plaza Singapore, 308900 Phone: +65-6358-2160 e-mail: singaporesales@power.com

TAIWAN

5F, No. 318, Nei Hu Rd., Sec. 1 Nei Hu District Taipei 11493, Taiwan R.O.C. Phone: +886-2-2659-4570 e-mail: taiwansales@power.com

UK

Building 5, Suite 21 The Westbrook Centre Milton Road Cambridge CB4 1YG Phone: +44 (0) 7823-557484 e-mail: eurosales@power.com

